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Following the method of classical mechanics, we calculate the action for Fourier heat conduction from the
classical Hamilton-Jacobi equation. We can write a Schrödinger-type equation and we obtain its solution, the
kernel by which we may introduce a kind of wave function. Mathematically, we follow Bohm’s method
introduced to quantum mechanics. The generalized Hamilton-Jacobi equation—which may be handled as a
quantum-thermodynamical form—can be calculated. Irreversibility and dissipation are included in a natural
way in the field theory of nonequilibrium thermodynamics, so in this way we obtain a quantum-
thermodynamical approach of simple dissipative processes.
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I. INTRODUCTION

The motion of the classical ensemble can be derived from
the LagrangianLC defined by the following expression:
[1–7]

LC =E pF ] S

] t
+

1

2m
s=Sd2 + VGd3x, s1d

where the variableSsx,td is the classical action, the variable
psx,td is the probability density to find the particle at the
space coordinatex at time t. (The probability must be nor-
malized:epd3x=1), Vsx,td is the classical(mechanical) po-
tential, m is the mass of particle, and= is the gradient op-
erator. For the real path of motion the integral

E LCdt, s2d

is extremal, i.e., using the calculus of variations

dE LCdt = 0, s3d

is valid. After the variation—with respect to the variablesS
and p—we obtain two equations as Euler-Lagrange equa-
tions

] S

] t
+

1

2m
s=Sd2 + V = 0, s4d

which is the classical Hamilton-Jacobi equation, and

] p

] t
+ = Sp

1

m
= SD = 0, s5d

which is a continuity equation for the probability density.
Following Hall and Reginatto’s work[7,8], a modified La-
grangianLQM can be obtained as a consequence of the mo-
mentum fluctuations

LQM =E pF ] S

] t
+

1

2m
s=Sd2 +

"2

8m

s=pd2

p2 + VGd3x, s6d

where" is the Planck constant per 2p. After the calculation
of variation, we get two Euler-Lagrange equations, the quan-
tum Hamilton-Jacobi equation

] S

] t
+

1

2m
s=Sd2 +

"2

8m
F s=pd2

p2 −
2Dp

p
G + V = 0, s7d

whereD is the Laplace operator, and the continuity equation
for the probability densityp is

] p

] t
+ = Sp

1

m
= SD = 0. s8d

Bohm [1,2] deduced these equations from the Schrödinger
equation

i"
] C

] t
= −

"2

2m
DC + VC, s9d

wherei is the complex unit,C is a complex function, which
can be expressed as

C = R expSi
S

"
D . s10d

Now R andS are real, and

p = R2. s11d

It is readily verified that the quantum Hamilton-Jacobi equa-
tion [Eq. (7)] and the continuity equation[Eq. (8)] can be
obtained. After these, we make a step towards the study of a
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dissipative process, the linear(Fourier) heat conduction, for
which we apply Bohm’s method. Several equations of mo-
tion of field theories can be calculated from the least action
principle. It means not only that these equations are derived
for the relevant simple interactions, but the interaction of
different fields can be taken into account, i.e., the coupling of
fields appears in the field equations. This can be achieved by
choosing additional terms in the Lagrangian. This is a pos-
sible way to describe the interaction of different processes.
The equation of heat conduction is also a field equation; this
can describe a dissipative process, but it cannot be connected
easily to other fields within the Lagrangian formalism. This
was the reason why there were several efforts to construct
the Hamiltonian structure of those transport processes, such
as heat conduction, diffusion, etc. These processes are treated
mostly within the framework of nonequilibrium thermody-
namics. This means that the concept of irreversibility and
dissipation also can be introduced to those field theories in
which these concepts do not exist from the viewpoint of
thermodynamics. Advanced results for Lagrangian, Hamil-
tonian approach using the canonical equations and Hamilton-
Jacobi equation to study macroscopic dissipative processes
including the fluctuation theory can be found in Sieniutyczet
al. [9–12] and Bertiniet al. [13,14].

The developed theory of nonequilibrium thermodynamics
includes the Hamiltonian formulation of those dissipative
processes[15] which can be given linear parabolic and hy-
perbolic differential equations(e.g., Fourier heat conduction
and telegrapher equation) [16,17]. The completed Poisson-
bracket formalism is worked out for these processes; more-
over, successful steps were taken towards the description of
behavior of quantum[18,19] and stochastic phenomena[20]
within dissipative systems. We could discuss the theory[21]
from the viewpoint of the extreme physical information prin-
ciple introduced by Frieden[22–24]. In the present work we
calculate the Hamilton-Jacobi equation for Fourier heat con-
duction, the action, the kernel, and a wave function. We ap-
ply Bohm’s idea[1,2], by which method we can obtain the
quantum-thermodynamical Hamilton-Jacobi equation and
the quantum-thermodynamical potential. Here, we will see
that the Fisher information[25–27] appears in the thermody-
namical theory, and we suppose that this description should
have a connection to the extreme physical information, too.

We admit that sometimes the physical interpretation is not
easy or sufficient. We can trust in the elegant mathematical
formulation and the hope that the basic concepts(Lagrange-
Hamilton formalism, canonical formalism, Poisson brackets,
dissipation, irreversibility, quantization, etc.) can be general-
ized; these have a general validity regardless of the examined
physical process, and can be summarized in a unified theory.

II. HAMILTONIAN DESCRIPTION OF HEAT
CONDUCTION

The mathematical calculus of Hamiltonian formalism is
the starting point which was originally developed and ap-
plied to describe reversible, nondissipative physical pro-
cesses[28]. However, we have shown that this mathematical
method can be modified and applied to dissipative processes

[15,18–20], e.g., for Fourier heat conduction.(This equation
is a parabolic differential equation, i.e., where a not-self-
adjoint operator stands in the case of time derivative.) In this
section we briefly summarize the description of a thermal
field, where we apply the methods of field theory.

A physical process can be described by the Lagrangian,
i.e., all information of evolution of a physical process is in-
volved in this scalar function. The time integration of the
Lagrangian yields the classical actionSfb,ag

Sfb,ag =E
ta

tb

Lsq̇,q,tddt, s12d

wherea belongs to the initial state at timeta; b is the final
one attb. The classical LagrangianL of the physical problem
may depend onq and its time derivatives(here, justq̇) and
the timet. The Hamilton’s principle states that the variation
of action is zero for the real physical processes

dS= 0. s13d

This principle is generalized for those cases when the La-
grangian depends on the field quantityw and its derivatives
]w /]t, ]w /]x, Dw, etc. Then,L is the Lagrange density func-
tion; the action is

S=E Ld3x dt; s14d

we must integrate over the volume, where the process is
going. The Hamilton’s principle—the action has an extre-
mum for the real physical processes—remains the same. The
field equation of the source-free Fourier heat conduction is

] T

] t
−

l

cv
DT = 0, s15d

whereTsx,td is the temperature,l is the heat conductivity,
andcv is the specific heat capacity. This differential equation
contains a first-order derivative(time derivative) which is
not a self-adjoint operator. This means that no Lagrangian
can be written with the original variable(s) (here the tem-
perature) unless we introduce additional variables. The situ-
ation is similar to the electrodynamics, where the Maxwell
equations can be deduced from the Hamilton’s principle us-
ing the vector and scalar potentials. There, the operators of
the time derivative and the divergence are not self-adjoint.(If
the field equation contains just self-adjoint operators, such as
second-order time and space derivatives, the Lagrangian can
be simply constructed with the original variables.) This is the
reason why we have to introduce a scalar, differentiable(po-
tential) field wsx,td [15]

T = −
] w

] t
−

l

cv
Dw, s16d

which is connected to the measurable fieldT in this equation.
The Lagrange density function of the physical problem ex-
pressed by thew is

F. MÁRKUS AND K. GAMBÁR PHYSICAL REVIEW E 70, 016123(2004)

016123-2



L =
1

2
S ] w

] t
D2

+
1

2

l2

cv
2 sDwd2, s17d

from which we can obtain the field equation ofw as Euler-
Lagrange equation

0 =
]2w

] t2
−

l2

cv
2 DDw. s18d

If we substitute the equation of definition ofw we obtain the
field equation of Fourier heat conduction[15]. In the field
theories the field variables are written in Fourier series,
where the Fourier coefficients depend only on the time, and,
e.g., the quantization procedure is prepared by these coeffi-
cients. These will be the generalized coordinates of the sys-
tem. Here, we follow this idea[18,19], i.e., letw be

wsx,td = o
k.0
Î2

Ṽ
sCk coskx+ Sk sin kxd, s19d

whereCk and Sk are the function of time, and these can be

handled as the generalized coordinates of the system;Ṽ is the
volume in the coordinate space. The Lagrangian of the field
can be calculated if we substitute the Fourier series ofw into
Eq. (17) and we integrate over the volumesd3xd. We get the
Lagrangian of the space, which depends only on the gener-
alized coordinates and the first-order derivatives of these
with respect to time

L =
1

2 o
k.0

FsĊk
2 + Ṡk

2d +
l2

cv
2 k4sCk

2 + Sk
2dG . s20d

In its form we find an expression

VsCk,Skd = − o
k

1

2

l2

cv
2 k4sCk

2 + Sk
2d, s21d

which is very similar to the classical quadratic potentials.
(We have seen that this potential term—pertaining to a re-
pulsive interaction—appeared in the quantization procedure,
and its negative sign caused serious mathematical difficulties
[18,19].) So, the Lagrangian can be devided into two parts, a
“kinetical” term sKd and a “potential” termsVd, by which
expressions the usual formL=K−V can be written.

The canonically conjugated quantities are the generalized
momentaPK

sCd andPK
sSd, i.e.,

PK
sCd =

] L

] Ck
= Ċk, s22d

and

PK
sSd =

] L

] Ck
= Ṡk. s23d

Now, we can express the Hamiltonian of the systemsH=K
+Vd [18,19] by these momenta

H = o
k
S1

2
Pk

sCd2 −
1

2

l2

cv
2 k4Ck

2D + o
k
S1

2
Pk

sSd2 −
1

2

l2

cv
2 k4Sk

2D .

s24d

III. HAMILTON-JACOBI EQUATION, THE ACTION, THE
KERNEL, AND A WAVE FUNCTION

The classical Hamilton-Jacobi equation can be written in
general

] S

] t
+ HSq1, . . . ,qf,

] S

] q1
, . . . ,

] S

] qf
D = 0, s25d

where theqi’s are the generalized coordinates; the]S/]qi’s
are the momentaPi’s si =1, . . . ,fd. In our special case, using
Eq. (24) we can express the Hamilton-Jacobi equation of
heat conduction by the Fourier coefficients as generalized
coordinates

] S

] t
+ o

k
S1

2
S ] S

] Ck
D2

+
1

2
S ] S

] Sk
D2D − o

k

1

2

l2

cv
2 k4sCk

2 + Sk
2d = 0.

s26d

This equation can be obtained from the variation of integral
over time and space of generalized coordinates

0 = dE PF ] S

] t
+ o

k
S1

2
S ] S

] Ck
D2

+
1

2
S ] S

] Sk
D2D + VGdt dV,

s27d

whereP is the probability density to find the system in the
state described by the set of generalized coordinatesCk and
Sk: i.e., PsCk,Skd; dV= . . .dCi . . .dSj. . . is the volume element
in the space of generalized coordinates. Here, the classical
LagrangianLCL can be written in the following form:

LCL =E PF ] S

] t
+ o

k
S1

2
S ] S

] Ck
D2

+
1

2
S ] S

] Sk
D2D + VGdV.

s28d

After the variation a second equation appears

] P

] t
+ ¹ sP ¹ Sd = 0, s29d

which is a continuity equation for the probability density, and
here¹ denotes the vector operators. . .] /]Ci , . . . ,] /]Sj . . .d.
The system is developing from the statea at time ta to the
stateb at timetb, and we supposetb. ta. Solving this partial
differential equation, taking into account the initial and final
states, the calculated action for this process is

Sfb,ag = o
k.0

l

cv
k2

2 sinhS l

cv
k2stb − tadD 3 FsCka

2 + Ckb
2 + Ska

2

+ Skb
2 dcoshS l

cv
k2stb − tadD − 2CkaCkb − 2SkaSkbG ,

s30d

which is the solution of the Hamilton-Jacobi equation. In
general, the kernel of a quadratic action can be written[29]
(or can be calculated by the path integral method[30–32])
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KFsb,ad = p
k.0

l

cv
k2

2pih*sinhS l

cv
k2tD

3 exp1
l

cv
k2i

2h*sinhS l

cv
k2tDFsCka

2 + Ckb
2 + Ska

2

+ Skb
2 dcoshS l

cv
k2tD − 2CkaCkb − 2SkaSkbG2 ,

s31d

where we denotet= tb− ta. This propagator might be called
the WKB propagator, which is exact for all those
Lagrangians which can be expressed by quadratic terms. It
can be simply proved that this propagator is the solution of
the following generalized Schrödinger-type equation:

−
h*

i

] KF

] t
= − o

k

h*2

2

]2KF

] Ck
2 − o

k

h*2

2

]2KF

] Sk
2

− o
k

l2k4

2cv
2 sCk

2 + Sk
2dKF, s32d

which shows the correctness of the propagator from another
viewpoint. Here,h* denotes the unit of dissipative actionS:
h* =2" /kB, where" is the Planck constant per 2p; kB is the
Boltzmann constant. Moreover, if we takeCk, Pk

sCd, Sk, and
Pk

sSd operators, they are obeying the commutation rules
fPk

sCd ,Clg=h*dkl and fPk
sSd ,Slg=h*dkl; the canonical quantiza-

tion procedure is based on these requirements[19]. The ap-
plicability of Feynman path integral method shows and car-
ries the construction of wave functionC which is related to
the propagatorKF. These facts may indicate the possibility of
particle-wave duality in the present case. The Schrödinger-
type equation for the wave function can be read

−
h*

i

] C

] t
= − o

k

h*2

2

]2C

] Ck
2 − o

k

h*2

2

]2C

] Sk
2

− o
k

l2k4

2cv
2 sCk

2 + Sk
2dC. s33d

This equation should describe the whole system at the same
time, and this points out that a kind of quantum behavior
appears in the heat process. However, the physical meaning
of this equation is not clear at all. It is obvious that the
classical Hamilton-Jacobi equation of heat conduction[Eq.
(26)] cannot give this equation; we have to find another
equation which includes the quantum behavior. We follow

Bohm’s idea [1] to obtain the quantum Hamilton-Jacobi
equation of the problem. The wave function can be expressed

C = R expSi
S

h* D , s34d

whereRsCk,Skd is real and

C*C = R2 = P. s35d

We substitute Eq.(34) into Eq. (33); then, we can separate a
real and an imaginary part of the resulting equation. So, we
obtain a continuity equation

] P

] t
+ ¹ sP ¹ Sd = 0, s36d

and the quantum-thermodynamical Hamilton-Jacobi equa-
tion

] S

] t
+ o

k
S1

2
S ] S

] Ck
D2

+
1

2
S ] S

] Sk
D2D − o

k

1

2

l2

cv
2 k4sCk

2 + Sk
2d

−
h*2

2R
o
k
S ]2R

] Ck
2 +

]2R

] Sk
2D = 0. s37d

The third term is the classical potential, similar to the term in
Eq. (21); the last term

UsCk,Skd = −
h*2

2R
o
k
S ]2R

] Ck
2 +

]2R

] Sk
2D , s38d

is also a potential. This vanishes whenh* =0, so this pertains
to a quantum physical behavior of the process. This may be
called quantum-thermodynamical potential. We may express
this UsCk,Skd potential by the probability densityPsCk,Skd
introduced by Eq.(35)

UsCk,Skd = −
h*2

4 o
k
F 1

P

]2P

] Ck
2 −

1

2P2S ] P

] Ck
D2

+
1

P

]2P

] Sk
2

−
1

2P2S ] P

] Sk
D2G . s39d

IV. ON THE THERMODYNAMICAL POTENTIALS:
CLASSICAL †V„Ck ,Sk…‡ AND

QUANTUM-THERMODYNAMICAL †U„Ck ,Sk…‡

We discuss the two potentials which appeared in the
above sections, but we restrict our examination to the sta-
tionary case, i.e., when the time derivative equals zero. Then,
the temperatureTsxd is simply written as

Tsxd = −
l

cv
Dw. s40d

Using the Fourier series ofw [see Eq.(19)], we obtain

F. MÁRKUS AND K. GAMBÁR PHYSICAL REVIEW E 70, 016123(2004)

016123-4



Tsxd =
l

cv
o
k.0
Î2

Ṽ
k2sCkcoskx+ Sksin kxd. s41d

If we calculate the square of both sides and integrate over the
coordinate spacex, we get

E T2sxdd3x =
l2

cv
2 o

k.0
k4sCk

2 + Sk
2d. s42d

So, it is easy to verify that in the stationary case the classical
(thermodynamical) potential can be written

V = − 1
2 E T2sxdd3x, s43d

i.e., a repulsive interaction proportional to the temperature
square is working during the heat conduction.

Now, we examine the quantum potential. First, we calcu-
late the probabilityP. For this, we express the stationary
action from Eq.(30)

S= o
k

1

2

l

cv
k2sCk

2 + Sk
2 + Cka

2 + Ska
2 d, s44d

and we take into account the stationary version of the conti-
nuity equation[Eq. (36)]

¹sP ¹ Sd = 0. s45d

Finding the solution, one can verify that the probability den-
sity is

P = sp
k

CkSkd−1. s46d

We can express the quantum-thermodynamical potential[see
Eq. (39)] by the generalized coordinates using the above
form of the probability density

UsCk,Skd = −
3h*2

8 o
k
S 1

Ck
2 +

1

Sk
2D . s47d

In order to write this potential in measurable parameters, we
give theCk andSk using the form of steady-state(stationary)
temperature by Eq.(40) and the form ofw by Eq.(19). After
the Fourier transformation we obtain

Ck =
cv

lk2 E Tsxdcoskxd3x, s48d

and

Sk =
cv

lk2 E Tsxdsin kxd3x. s49d

We substitute these coefficients into Eq.(47) to get the quan-
tum potential expressed by the temperatureTsxd

U = −
3h*2l2

8cv
2 o

k

k4S 1

se Tsxdcoskxd3xd2

+
1

se Tsxdsin kxd3xd2D . s50d

We mention again that this formula is valid for steady-state

thermal processes. As it can be seen, the smaller temperature
is the higher repulsive interactionsUd. This means that it
plays a significant role when the temperature is close to the
absolute zero temperature. When the temperature is high, this
potential sUd can be neglected comparing the classical po-
tential sVd given by Eq.(43). This is in line with our expec-
tations.

Finally, we substitute the expression of quantum-
thermodynamical potential into the expression of quantum
Hamilton-Jacobi equation[Eq. (37)]. Now, we look for the
Lagrangian which can give the Hamilton-Jacobi equation
and the continuity equation forP. It can be seen that the
LagrangianLQT is

LQT =E PFS ] S

] t
+

1

2
s¹Sd2 + VD +

h*2

2

s¹Pd2

P2 GdV,

s51d

i.e.,

LQT = LCL +
h*2

2
E s¹Pd2

P
dV. s52d

The last term of the integral is proportional to the so-called
Fisher information written in the generalized coordinate
space

IF =E s¹Pd2

P
dV, s53d

which may play an interesting role in the description of
quantized thermodynamical system.

V. SUMMARY

We have showed that the Hamilton-Jacobi equation for
some simple dissipative processes(described by linear para-
bolic differential equation) can be given in a suitable intro-
duced generalized coordinate space. We calculated the action
for the Fourier heat conduction, and applying Bohm’s
method we could obtain the generalized Hamilton-Jacobi
equation, which contains the quantum properties. Two repul-
sive potentials appeared in the thermodynamical theory. We
have expressed these potentials by the measurable tempera-
ture, but we restricted our examination and calculations to
the stationary temperature field. The classical repulsive po-
tential V is proportional to the temperature square integrated
over the coordinate space. The quantum-thermodynamical
potentialU is a function given by the reciprocal of tempera-
ture square. When the temperature is large enough, the quan-
tum processes can be neglected; when the temperature is
small(very close to the absolute zero temperature), the quan-
tum effects will be more important. We pointed out that the
Fisher information plays a central role in the description of
the thermal processes and irreversibility.
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