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Generalized Hamilton-Jacobi equation for simple dissipative processes
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Following the method of classical mechanics, we calculate the action for Fourier heat conduction from the
classical Hamilton-Jacobi equation. We can write a Schrédinger-type equation and we obtain its solution, the
kernel by which we may introduce a kind of wave function. Mathematically, we follow Bohm’s method
introduced to quantum mechanics. The generalized Hamilton-Jacobi equation—which may be handled as a
quantum-thermodynamical form—can be calculated. Irreversibility and dissipation are included in a natural
way in the field theory of nonequilibrium thermodynamics, so in this way we obtain a quantum-
thermodynamical approach of simple dissipative processes.
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I. INTRODUCTION ap 1
—+V|p=—VS|=0, (5)
The motion of the classical ensemble can be derived from at m
the LagrangianLc defined by the following expression: \yhich is a continuity equation for the probability density.
[1-7] Following Hall and Reginatto’s work7,8], a modified La-
grangianLgy can be obtained as a consequence of the mo-
s 1 i
Lc:f ol 251 L vy, (1)  mentum fluctuations
Jt  2m 2 5
1 ., 17 (Vp) 3
w= | p| oS ooV o+ V| dx, (6)
where the variabl&(x,t) is the classical action, the variable Jt - 2m m p

p(x,t) is the probability density to find the particle at the wnere is the Planck constant pem2After the calculation

space coordinate at timet. (The probability must be nor-  of variation, we get two Euler-Lagrange equations, the quan-
malized: [pd®x=1), V(x,t) is the classicalmechanical po-  tym Hamilton-Jacobi equation

tential, m is the mass of particle, an¥ is the gradient op-

erator. For the real path of motion the integral s L(VS)ZJF ﬁ_z{ (VB)Z i @] o )
Jt  2m 8m| p
f Lcdt, 2) whereA is the Laplace operator, and the continuity equation
for the probability densityp is
is extremal, i.e., using the calculus of variations % +V (p% v S) -0. (8)
5J Ledt=0, (3) Bohm [1,2] deduced these equations from the Schrddinger
equation
2
is valid. After the variation—uwith respect to the variab®s iﬁﬂ —— Ll AV + VW, (9)
and p—we obtain two equations as Euler-Lagrange equa- at 2m
tions

wherei is the complex unit¥ is a complex function, which
)5 can be expressed as

1
— +—(V9?2+V=0, 4
5’t+2m( S @ quRexp(ig). (10)

which is the classical Hamilton-Jacobi equation, and Now R andS are real. and

p=R2. (11)
*Corresponding author. Email address: markus@phy.bme.hut is readily verified that the quantum Hamilton-Jacobi equa-
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dissipative process, the line@fourien heat conduction, for [15,18-20, e.qg., for Fourier heat conductiofThis equation
which we apply Bohm’s method. Several equations of mo-is a parabolic differential equation, i.e., where a not-self-
tion of field theories can be calculated from the least actioradjoint operator stands in the case of time derivatiirethis
principle. It means not only that these equations are derivedection we briefly summarize the description of a thermal
for the relevant simple interactions, but the interaction offield, where we apply the methods of field theory.

different fields can be taken into account, i.e., the coupling of A physical process can be described by the Lagrangian,
fields appears in the field equations. This can be achieved hye., all information of evolution of a physical process is in-
choosing additional terms in the Lagrangian. This is a posvolved in this scalar function. The time integration of the
sible way to describe the interaction of different processes.agrangian yields the classical acti§b,a]

The equation of heat conduction is also a field equation; this

can describe a dissipative process, but it cannot be connected LI

easily to other fields within the Lagrangian formalism. This Sb,a] :f L(g,q,0dt, (12)
was the reason why there were several efforts to construct fa

the Hamiltonian structure of those transport processes, suGhherea belongs to the initial state at tintg; b is the final

as heat conduction, diffusion, etc. These processes are treatgfle att,. The classical Lagrangidnof the physical problem
mostly within the framework of nonequilibrium thermody- may depend om and its time derivativeghere, justy) and

namics. This means that the concept of irreversibility anghe timet. The Hamilton's principle states that the variation
dissipation also can be introduced to those field theories igf gction is zero for the real physical processes

which these concepts do not exist from the viewpoint of

thermodynamics. Advanced results for Lagrangian, Hamil- 55=0. (13

tonian approach using the canonical equations and Hamilton-

Jacobi equation to study macroscopic dissipative process@is principle is generalized for those cases when the La-

including the fluctuation theory can be found in Sieniutgtz grangian depends on the field quantiyand its derivatives

al. [9-12 and Bertiniet al. [13,14]. dpl dt, dpl dx, Ap, etc. ThenL is the Lagrange density func-
The developed theory of nonequilibrium thermodynamicstion; the action is

includes the Hamiltonian formulation of those dissipative

processe$15] which can be given linear parabolic and hy-

perbolic differential equationg.g., Fourier heat conduction

and telegrapher equatipfl6,17. The completed Poisson-

bracket formalism is worked out for these processes; morewe must integrate over the volume, where the process is

over, successful steps were taken towards the description gbing. The Hamilton’s principle—the action has an extre-

behavior of quantunjil8,19 and stochastic phenomefi20] mum for the real physical processes—remains the same. The

within dissipative systems. We could discuss the th¢dfy  field equation of the source-free Fourier heat conduction is

from the viewpoint of the extreme physical information prin-

ciple introduced by Friedef22—-24. In the present work we dT N\ AT=

calculate the Hamilton-Jacobi equation for Fourier heat con- ot C_U T=0, (15)

duction, the action, the kernel, and a wave function. We ap-

ply Bohm’s idea[1,2], by which method we can obtain the whereT(x,t) is the temperature) is the heat conductivity,

quantum-thermodynamical Hamilton-Jacobi equation ancndc, is the specific heat capacity. This differential equation

the quantum-thermodynamical potential. Here, we will seecontains a first-order derivativéime derivative which is

that the Fisher informatiof25-27 appears in the thermody- not a self-adjoint operator. This means that no Lagrangian

namical theory, and we suppose that this description shoulgan be written with the original varialfs (here the tem-

have a connection to the extreme physical information, tooperaturg unless we introduce additional variables. The situ-
We admit that sometimes the physical interpretation is noktion is similar to the electrodynamics, where the Maxwell

easy or sufficient. We can trust in the elegant mathematicadquations can be deduced from the Hamilton’s principle us-

formulation and the hope that the basic concgpegyrange- ing the vector and scalar potentials. There, the operators of

Hamilton formalism, canonical formalism, Poisson bracketsthe time derivative and the divergence are not self-adjdlint.

dissipation, irreversibility, quantization, efcan be general-  the field equation contains just self-adjoint operators, such as

ized; these have a general validity regardless of the examinaskcond-order time and space derivatives, the Lagrangian can

physical process, and can be summarized in a unified theorgge simply constructed with the original variab)eEhis is the

reason why we have to introduce a scalar, differentighte

tential field ¢(x,t) [15]

S= f Ld®x dt (14)

IIl. HAMILTONIAN DESCRIPTION OF HEAT
CONDUCTION

The mathematical calculus of Hamiltonian formalism is T:_E _C_UA¢’ (16)

the starting point which was originally developed and ap-

plied to describe reversible, nondissipative physical prowhich is connected to the measurable fi€loh this equation.
cesse$28]. However, we have shown that this mathematicalThe Lagrange density function of the physical problem ex-
method can be modified and applied to dissipative processgsessed by the is
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1(d¢ 122 Ill. HAMILTON-JACOBI EQUATION, THE ACTION, THE

2
LzE(ET) +§EﬂA¢V, (17) KERNEL, AND A WAVE FUNCTION
U

The classical Hamilton-Jacobi equation can be written in

from which we can obtain the field equation e¢fas Euler-
general

Lagrange equation
d &_S + H( (9_5 (?_S) =0 (25)

0=———2AA<p. (19 ot ql""’q“aql""’aqf -
If we substitute the equation of definition gfwe obtain the \;Vrze{fetrﬁfg}feﬁ:;g] Z E;ineraI;)Z eI(;I] g%??giiigiaﬂsn
field equation of Fourier heat conducti¢h5]. In the field Eq. (24 1> th H it % bi ’ i 9 f
theories the field variables are written in Fourier series g. (24) we can express the Hamilton-Jacobl equation o

where the Fourier coefficients depend only on the time, anoheat conduction by the Fourier coefficients as generalized

e.g., the quantization procedure is prepared by these Coefﬁ_oordinates

cients. These will be the generalized coordinates of the sysy g (1< JS )2 1( (;3)2>
oS : 09 HO=) L e=2) )

tem. Here, we follow this idefl8,19, i.e., lete be at = \2\ac, 2\ a5,

o(x,t) = > g(Ck coskx+ S, sinkx), (19 (26)
k>0 V

2
> E)‘—k“(c§+ ) =0.

2
k 2C,

This equation can be obtained from the variation of integral
whereC, and S, are the function of time, and these can beover time and space of generalized coordinates

handled as the generalized coordinates of the systamthe 9S 1/ 9s\2 1/ as\2

volume in the coordinate space. The Lagrangian of the field 0 = 6f Pl —+2> <—<—> + —(—) ) +V |dt dQ,

can be calculated if we substitute the Fourier serieg ofto It T \20aC AEY

Eqg. (17) and we integrate over the volunié®x). We get the (27)

Lagrangian of the space, which depends only on the gener- i - i i )
alized coordinates and the first-order derivatives of thes&/hereP is the probability density to find the system in the

with respect to time state described by the set of generalized coordin@tesnd
) Sci.e., P(C,S); dQ=...dG...dS... is the volume element
_1 ~2 ¢ A° 2 in the space of generalized coordinates. Here, the classical
L= 220 (xS0 + c Ki(Ci+ S0 |- (20 LagrangianLc, can be written in the following form:
i i i aS 1/ 9S\*> 1(4S)\?
In its form we find an expression LCL:f pl 22+ (_(_) N _(_) ) +v|da.
1)\2 ) ot K 2 &Ck 2 &SK
V(Ci,S) =~ % Ec—gk“(ck +S), (21) 28)

which is very similar to the classical quadratic potentials.After the variation a second equation appears

(We have seen that this potential term—pertaining to a re- 9P

pulsive interaction—appeared in the quantization procedure, —+V((PV9=0, (29
and its negative sign caused serious mathematical difficulties ot

[18,19.) So, the Lagrangian can be devided into two parts, dyhich is a continuity equation for the probability density, and
“kinetical” term (K) and a “potential” term(V), by which  hereV denotes the vector operatar..d9/dC, ...,d/dS;...).

expressions the usual forb=K -V can be written. _ The system is developing from the statet timet, to the
The cangncally ((:S?qugated quantities are the generalizegatep at timet,, and we supposg>t,. Solving this partial
momentaP,” andP,”, i.e., differential equation, taking into account the initial and final
states, the calculated action for this process is
© _ L -
Py’'=—=C (22
‘?Ck ’ AkZ
CU
and Sha)= 2 N X [<C§a+ Coo* Saa
L . “02 sini —KA(t, - t,)
P(S) = —= ) 23 I—(C
K= 3¢ X (23) v
A
Now, we can express the Hamiltonian of the sysig¢trK + §b)008"(c—k2(tb—t60) = 2CeCrp ~ 25«;15@},
+V) [18,19 by these momenta v (30
30
1 o2 1A? 1 g2 12
H=2> <5P<kc) - Egk‘lcﬁ) +> <§P(ks) —E?k“33>- which is the solution of the Hamilton-Jacobi equation. In
k v k v

general, the kernel of a quadratic action can be wrif23)
(24 (or can be calculated by the path integral meth8a-32)
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Bohm’s idea[l] to obtain the quantum Hamilton-Jacobi

—K equation of the problem. The wave function can be expressed
KF(b!a) = H . N
k>0 L N2 S
2mih S'”“( oK t) ¥ =R exp(iﬁ> , (34)
N . .
C—k i whereR(Cy,S)) is real and
2h*sinh<—k2t> VW=R=P. (35
’ We substitute Eq(34) into Eq.(33); then, we can separate a
real and an imaginary part of the resulting equation. So, we
N ; O3 .
+S b)cosr<c—k2t) - 2CCro- ZSKaSKb:| ' obtain a continuity equation

P, V(PVS=0, (36)
(31) at

and the quantum-thermodynamical Hamilton-Jacobi equa-
where we denoté=t,—t,. This propagator might be called tion
the WKB propagator, which is exact for all those
Lagrangians which can be expressed by quadratic terms. It S 1/ 9S\?> 1(/9S)\? 1\?
can be simply proved that this propagator is the solution of ;¢ +2 2 (9_(:'( "'5 E B % 22
the following generalized Schrodinger-type equation: v

K(CE+S)

k

h? PR &#R

. . . - o2zt <)=0 (37)
h" 9Kg h'2 K h'2 K 2R \0C2 0

T Y L S
L at c 209G Tk 2 5$ The third term is the classical potential, similar to the term in
K Eq. (21); the last term
- F(Cﬁﬂ‘ SOKE, (32
‘ ’ U(C S()—_h_*zz (ﬁ+(3’2_R> (38)
T R\ 0

which shows the correctness of the propagator from another

viewpoint. Here ' denotes the unit of dissipative acti® s ais0 a potential. This vanishes wher=0, so this pertains

h =2h/kg, wheref, is the Planck constant pen(rng isthe 5 a quantum physical behavior of the process. This may be
B?SI)tzmann constant. Moreover, if we takg, P, S, and  called quantum-thermodynamical potential. We may express
P~ operators, they are obeying the commutation ruleshis U(C,,S,) potential by the probability densitp(C,,S,)
[P, Cl=h"8q and[P>,S]1=h"6; the canonical quantiza- introduced by Eq(35)

tion procedure is based on these requiremgt@. The ap-

plicability of Feynman path integral method shows and car- h"? 1P 1 [aP\*> 1P

ries the construction of wave functioh which is related to U(CiSd = - TE {EE B ﬁ(%) + EE

the propagatoKg. These facts may indicate the possibility of k k k

particle-wave duality in the present case. The Schrodinger- 1(aP)\2

type equation for the wave function can be read T op2 E : (39
hgw h'2 #w h'2 2w

IV. ON THE THERMODYNAMICAL POTENTIALS:
CLASSICAL [V(Cy,S)] AND
QUANTUM-THERMODYNAMICAL  [U(Cy,S0]

i ot S 29C2 T 249

NKA
-2 5 (C+ V. (33 . ' _ _
k 2C, We discuss the two potentials which appeared in the
above sections, but we restrict our examination to the sta-

This equation should describe the whole system at the sanfionary case, i.e., when the time derivative equals zero. Then,
time, and this points out that a kind of quantum behaviorth® temperatur&(x) is simply written as

appears in the heat process. However, the physical meaning
of this equation is not clear at all. It is obvious that the T(X)=—AA(p. (40)
classical Hamilton-Jacobi equation of heat conducfigg. c

(26)] cannot give this equation; we have to find another

equation which includes the quantum behavior. We followUsing the Fourier series op [see EQ.(19)], we obtain

U
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A 2., _ thermal processes. As it can be seen, the smaller temperature
T(x) :C—E —k(Cicoskx+Ssinkx).  (41) s the higher repulsive interactiof). This means that it

vk=0 V'V plays a significant role when the temperature is close to the
If we calculate the square of both sides and integrate over th@dSolute zero temperature. When the temperature is high, this
coordinate spacg, we get potential (U) can be neglected comparing the classical po-
\2 tential (V) given by Eq.(43). This is in line with our expec-
T20dx = =S K42+ D). 42 tations.
f 00 cﬁ g’o (G Sﬁ) 42 Finally, we substitute the expression of quantum-

o ) ) . ~ thermodynamical potential into the expression of quantum
So, itis easy to verify that in the stationary case the classicgliamilton-Jacobi equatiofEqg. (37)]. Now, we look for the

(thermodynamicalpotential can be written Lagrangian which can give the Hamilton-Jacobi equation
and the continuity equation foP. It can be seen that the
V=-3 f T2 () dx, (43)  LagrangianLgr is
i.e., a repulsive interaction proportional to the temperature LQT:f p|:<&_s+l(vs)2+v> i h_Z(VF;)Z]dQ,
square is working during the heat conduction. 2 2 P
Now, we examine the quantum potential. First, we calcu- (51)
late the probabilityP. For this, we express the stationary
action from Eq.(30) e,
*2 2
5= KC+S+ChrS), (49 Lr=tar s [ T a0, 2
K 2C, 2 P
and we take into account the stationary version of the contiThe last term of the integral is proportional to the so-called
nuity equation[Eq. (36)] Fisher information written in the generalized coordinate
V(PV9=0. (45 SPace
. . : . (VP)?
Finding the solution, one can verify that the probability den- I :f dQ, (53)
sity is P
P=(Ics)™ (46) which may play an interesting role in the description of
K quantized thermodynamical system.
We can express the quan_tum-therquynamicgl potejista V. SUMMARY
Eq. (39)] by the generalized coordinates using the above
form of the probability density We have showed that the Hamilton-Jacobi equation for
302 1 1 some simple dissipative procesgdescribed by linear para-
U(CuS)=——2, (_2 + _>_ (47)  bolic differential equationcan be given in a suitable intro-
8 K \Cq Szk duced generalized coordinate space. We calculated the action

for the Fourier heat conduction, and applying Bohm's
fhethod we could obtain the generalized Hamilton-Jacobi
equation, which contains the quantum properties. Two repul-
sive potentials appeared in the thermodynamical theory. We
have expressed these potentials by the measurable tempera-

In order to write this potential in measurable parameters, w
give theCy andS;, using the form of steady-stafstationary
temperature by Eq40) and the form ofp by Eq.(19). After
the Fourier transformation we obtain

c, ture, but we restricted our examination and calculations to
Cy= Nz T(x)coskxdx, (48)  the stationary temperature field. The classical repulsive po-
tential V is proportional to the temperature square integrated
and over the coordinate space. The quantum-thermodynamical
c potentialU is a function given by the reciprocal of tempera-
S=-5 f T(x)sin kxcPx. (49 ture square. When the temperature is large enough, the quan-
Ak tum processes can be neglected; when the temperature is
We substitute these coefficients into E4j7) to get the quan-  Small(very close to the absolute zero temperafuitee quan-
tum potential expressed by the temperaftite) tum effgcts W|II.be more important. We _pomted out _that the
. Fisher information plays a central role in the description of
__3n 2)\22 ( 1 the thermal processes and irreversibility.
8c2 % \(J T(x)coskxdPx)?
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